

# Synchronizing multi-media streams

Kishan Shenoi

CTO, Qulsar

WSTS - 2013, San Jose, April 16-18, 2013

### **Outline of Presentation**



- Fundamental need for synchronization
- Alignment of multiple streams
- Conventional approach
- ▶ Time alignment in multi-media
- Using time-stamps for alignment
- Concluding remarks

### Fundamental need for Synchronization





- Real time transmission of audio/video over digital networks requires conversion from analog-to-digital (at source) and digital-to-analog (at destination)
- ► Impact of frequency difference (△f):
  - Eventually buffers will overflow/underflow (e.g. slips) ("obvious")
  - Pitch Modification Effect (PME) (analogous to *Doppler*) makes recovered symbol clock ≠ transmit symbol clock (not so "obvious")
  - Recovered waveform ≠ original waveform (more than just additive noise)

#### QULSAR

### Alignment of multiple streams



Alignment required in time <u>and</u> frequency between the (multiple) streams

## **Conventional Approach**





- RTP time-stamps are based on a "count" of samples
- Additional step required to translate "count" to "time"
- Frequency offset between video/audio clocks can introduce QoE impairments



# Timing Alignment in Multimedia



- Frequency offset (wander) between audio and video sampling results in loss of lip-sync – use System Clock for both
- Frequency offset (wander) between send-side and receive-side system clock results in freeze (video), breaks (audio), and possible loss of lipsync (align System Clock)

#### QULSAR

# Using Time-stamps for Alignment

- Emulate a constant delay:
  - Generate a "creation" time-stamp C when a block of digital samples are collected from the A/D
  - Predetermine a suitable delay X
  - Convert block to analog at time (C+X)
- Time-stamps for audio and video are struck using a common System Clock
- System Clock at source and destination are synchronized
- Synchronization best achieved using:
  - Common PTP Grandmaster
  - Common GNSS (GPS)

#### QULSAR

## **Concluding Remarks**

- Using time-stamps linked to a common clock provides the following benefits:
  - Alignment of audio in frequency
  - Alignment of video in frequency
  - Alignment between multiple streams (audio and video)
  - Jitter buffer action to absorb network PDV
  - Prescribed delay
  - Audio and video sources do not have to be in same device (or geographic location)



### Questions?

#### Kishan Shenoi

Title: CTO, Qulsar, LLC

Email: kshenoi@qulsar.com

www.qulsar.com

Back-up slides follow

## **MPEG-2 Timing Model**







### Robust Circuit Emulation Service





# MPEG-2 timing (based on CES)



### References



- ▶ [1] MPEG2 Tutorial, http://www.bretl.com/mpeghtml/MPEGindex.htm.
- ▶ [2] A Guide to MPEG Fundamentals and Protocol Analysis (Including DVB and ATSC), An MPEG Tutorial from Tektronix.
- ▶ [3] ATIS IPTV Exploratory Group Report and Recommendation, Draft Revision: 1.5, June 17, 2005.
- ▶ [4] ATIS-0800002, *IPTV Architecture Requirements*.
- ▶ [5] ISO/IEC 13818-1, Information Technology Generic coding of moving pictures and associated audio information *Systems*
- ▶ [6] ITU-T Recommendation H.222.0 (equivalent to [5])
- ▶ [7] ISO/IEC 13818-9, Information Technology Generic coding of moving pictures and associated audio information Part 9: Extension for real-time interface for systems decoders.
- ▶ [8] ETSI TS 102 034 v1.1.1 (2003-5), Digital Video Broadcast (DVB); Transport of MPEG-2 Based DVB Services over IP Based Networks.